skip to main |
skip to sidebar
Software se refiere al equipamiento lógico o soporte lógico de una computadora digital, y comprende el conjunto de los componentes lógicos necesarios para hacer posible la realización de una tarea específica, en contraposición a los componentes físicos del sistema[1] (hardware).
Nace por la necesidad de aprovechar las capacidades de cómputo de las computadoras, permitiendo a los programadores organizar y escribir complejos conjuntos de instrucciones que posteriormente serán analizadas y traducidas a un lenguaje que las máquinas pueden comprender, obteniendo por todo este proceso unos ficheros conocidos popularmente como binarios o ejecutables, con las funciones específicas para lo que han sido creados. Como ejemplo, cabe mencionar al mismo traductor usado en el proceso, el cual consiste en otro programa que previamente se escribió para realizar dicha función.
Tales componentes lógicos incluyen, entre muchos otros, aplicaciones informáticas como procesadores de texto, que permiten manejar y codificar textos con formato; software de sistema, como un sistema operativo, que, básicamente, actúa de estación entre el hardware y los programas que solicitan recursos, facilitando la interacción con los componentes físicos y el resto de las aplicaciones.
(pronunciación AFI:[ˈsɔft.wɛɻ]), palabra proveniente del inglés (literalmente: partes blandas o suaves), que en español no posee una traducción adecuada al contexto, por lo cual se la utiliza asiduamente sin traducir y así fue admitida por la Real Academia Española (RAE).[2] Aunque no es estrictamente lo mismo, suele sustituirse por expresiones tales como programas (informáticos) o aplicaciones (informáticas).[3]Software es lo que se denomina producto en Ingeniería de Software.[4
Probablemente la definición más formal de software sea la siguiente:
Es el conjunto de los programas de cómputo, procedimientos, reglas, documentación y datos asociados que forman parte de las operaciones de un sistema de computación.
Extraído del estándar 729 del IEEE[5]Considerando esta definición, el concepto de software va más allá de los programas de cómputo en sus distintos estados: código fuente, binario o ejecutable; también su documentación, datos a procesar e información de usuario forman parte del software: es decir, abarca todo lo intangible, todo lo "no físico" relacionado.
El término «software» fue usado por primera vez en este sentido por John W. Tukey en 1957. En las ciencias de la computación y la ingeniería de software, el software es toda la información procesada por los sistemas informáticos: programas y datos. El concepto de leer diferentes secuencias de instrucciones desde la memoria de un dispositivo para controlar los cálculos fue introducido por Charles Babbage como parte de su máquina diferencial. La teoría que forma la base de la mayor parte del software moderno fue propuesta por vez primera por Alan Turing en su ensayo de 1936, "Los números computables", con una aplicación al problema de decisión.
Si bien esta distinción es, en cierto modo, arbitraria, y a veces confusa, a los fines prácticos se puede clasificar al software en tres grandes tipos:
Software de sistema: Su objetivo es desvincular adecuadamente al usuario y al programador de los detalles de la computadora en particular que se use, aislándolo especialmente del procesamiento referido a las características internas de: memoria, discos, puertos y dispositivos de comunicaciones, impresoras, pantallas, teclados, etc. El software de sistema le procura al usuario y programador adecuadas interfaces de alto nivel, herramientas y utilidades de apoyo que permiten su mantenimiento. Incluye entre otros:
Sistemas operativos
Controladores de dispositivos
Herramientas de diagnóstico
Herramientas de Corrección y Optimización
Servidores
Utilidades
Software de programación: Es el conjunto de herramientas que permiten al programador desarrollar programas informáticos, usando diferentes alternativas y lenguajes de programación, de una manera práctica. Incluye entre otros:
Editores de texto
Compiladores
Intérpretes
Enlazadores
Depuradores
Entornos de Desarrollo Integrados (IDE): Agrupan las anteriores herramientas, usualmente en un entorno visual, de forma tal que el programador no necesite introducir múltiples comandos para compilar, interpretar, depurar, etc. Habitualmente cuentan con una avanzada interfaz gráfica de usuario (GUI).
Software de aplicación: Es aquel que permite a los usuarios llevar a cabo una o varias tareas específicas, en cualquier campo de actividad susceptible de ser automatizado o asistido, con especial énfasis en los negocios. Incluye entre otros:
Aplicaciones para Control de sistemas y automatización industrial
Aplicaciones ofimáticas
Software educativo
Software empresarial
Bases de datos
Telecomunicaciones (p.ej. internet y toda su estructura lógica)
Videojuegos
Software médico
Software de Cálculo Numérico y simbólico.
Software de Diseño Asistido (CAD)
Software de Control Numérico (CAM)
Se define como Proceso al conjunto ordenado de pasos a seguir para llegar a la solución de un problema u obtención de un producto, en este caso particular, para lograr la obtención de un producto software que resuelva un problema.
El proceso de creación de software puede llegar a ser muy complejo, dependiendo de su porte, características y criticidad del mismo. Por ejemplo la creación de un sistema operativo es una tarea que requiere proyecto, gestión, numerosos recursos y todo un equipo disciplinado de trabajo. En el otro extremo, si se trata de un sencillo programa (por ejemplo, la resolución de una ecuación de segundo orden), éste puede ser realizado por un solo programador (incluso aficionado) fácilmente. Es así que normalmente se dividen en tres categorías según su tamaño (líneas de código) y/o costo: de Pequeño, Mediano y Gran porte. Existen varias metodologías para estimarlo, una de las más populares es el sistema COCOMO que provee métodos y un software (programa) que calcula y provee una estimación de todos los costos de producción en un "proyecto software" (relación horas/hombre, costo monetario, cantidad de líneas fuente de acuerdo a lenguaje usado, etc.).
Considerando los de gran porte, es necesario realizar tantas y tan complejas tareas, tanto técnicas, de gerenciamiento, fuerte gestión y análisis diversos (entre otras) que toda una ingeniería hace falta para su estudio y realización: es la Ingeniería de Software.
En tanto que en los de mediano porte, pequeños equipos de trabajo (incluso un avezado analista-programador solitario) pueden realizar la tarea. Aunque, siempre en casos de mediano y gran porte (y a veces también en algunos de pequeño porte, según su complejidad), se deben seguir ciertas etapas que son necesarias para la construcción del software. Tales etapas, si bien deben existir, son flexibles en su forma de aplicación, de acuerdo a la metodología o Proceso de Desarrollo escogido y utilizado por el equipo de desarrollo o por el analista-programador solitario (si fuere el caso).
Los "procesos de desarrollo de software" poseen reglas preestablecidas, y deben ser aplicados en la creación del software de mediano y gran porte, ya que en caso contrario lo más seguro es que el proyecto o no logre concluir o termine sin cumplir los objetivos previstos, y con variedad de fallos inaceptables (fracasan, en pocas palabras). Entre tales "procesos" los hay ágiles o livianos (ejemplo XP), pesados y lentos (ejemplo RUP) y variantes intermedias; y normalmente se aplican de acuerdo al tipo, porte y tipología del software a desarrollar, a criterio del líder (si lo hay) del equipo de desarrollo. Algunos de esos procesos son Extreme Programming (XP), Rational Unified Process (RUP), Feature Driven Development (FDD), etc.
Cualquiera sea el "proceso" utilizado y aplicado al desarrollo del software (RUP, FDD, etc), y casi independientemente de él, siempre se debe aplicar un "Modelo de Ciclo de Vida".[6]Se estima que, del total de proyectos software grandes emprendidos, un 28% fracasan, un 46% caen en severas modificaciones que lo retrasan y un 26% son totalmente exitosos. [7]Cuando un proyecto fracasa, rara vez es debido a fallas técnicas, la principal causa de fallos y fracasos es la falta de aplicación de una buena metodología o proceso de desarrollo. Entre otras, una fuerte tendencia, desde hace pocas décadas, es mejorar las metodologías o procesos de desarrollo, o crear nuevas y concientizar a los profesionales en su utilización adecuada. Normalmente los especialistas en el estudio y desarrollo de estas áreas (metodologías) y afines (tales como modelos y hasta la gestión misma de los proyectos) son los Ingenieros en Software, es su orientación. Los especialistas en cualquier otra área de desarrollo informático (analista, programador, Lic. en Informática, Ingeniero en Informática, Ingeniero de Sistemas, etc.) normalmente aplican sus conocimientos especializados pero utilizando modelos, paradigmas y procesos ya elaborados.
Es común para el desarrollo de software de mediano porte que los equipos humanos involucrados apliquen sus propias metodologías, normalmente un híbrido de los procesos anteriores y a veces con criterios propios.
El proceso de desarrollo puede involucrar numerosas y variadas tareas[6] , desde lo administrativo, pasando por lo técnico y hasta la gestión y el gerenciamiento. Pero casi rigurosamente siempre se cumplen ciertas etapas mínimas; las que se pueden resumir como sigue:
Captura, Elicitación[8] , Especificación y Análisis de requisitos (ERS)
Diseño
Codificación
Pruebas (unitarias y de integración)
Instalación y paso a Producción
Mantenimiento
En las anteriores etapas pueden variar ligeramente sus nombres, o ser más globales, o contrariamente, ser más refinadas; por ejemplo indicar como una única fase (a los fines documentales e interpretativos) de "Análisis y Diseño"; o indicar como "Implementación" lo que está dicho como "Codificación"; pero en rigor, todas existen e incluyen, básicamente, las mismas tareas específicas.
En el apartado 4 del presente artículo se brindan mayores detalles de cada una de las listadas etapas.
Para cada una las fases o etapas listadas en el ítem anterior, existen sub-etapas (o tareas). El modelo de proceso o modelo de ciclo de vida utilizado para el desarrollo define el orden para las tareas o actividades involucradas[6] también definen la coordinación entre ellas, enlace y realimentación entre las mencionadas etapas. Entre los más conocidos se puede mencionar: modelo en cascada o secuencial, modelo espiral, modelo iterativo incremental. De los antedichos hay a su vez algunas variantes o alternativas, más o menos atractivas según sea la aplicación requerida y sus requisitos.[7]

Este, aunque es más comúnmente conocido como modelo en cascada es también llamado "modelo clásico", "modelo tradicional" o "modelo lineal secuencial".
El modelo en cascada puro difícilmente se utilice tal cual, pues esto implicaría un previo y absoluto conocimiento de los requisitos, la no volatilidad de los mismos (o rigidez) y etapas subsiguientes libres de errores; ello sólo podría ser aplicable a escasos y pequeños desarrollos de sistemas. En estas circunstancias, el paso de una etapa a otra de las mencionadas sería sin retorno, por ejemplo pasar del Diseño a la Codificación implicaría un diseño exacto y sin errores ni probable modificación o evolución: "codifique lo diseñado que no habrán en absoluto variantes ni errores". Esto es utópico; ya que intrínsecamente el software es de carácter evolutivo, cambiante y difícilmente libre de errores, tanto durante su desarrollo como durante su vida operativa.[6]
Fig. 2 - Modelo cascada puro o secuencial para el ciclo de vida del software.
Algún cambio durante la ejecución de una cualquiera de las etapas en este modelo secuencial implicaría reiniciar desde el principio todo el ciclo completo, lo cual redundaría en altos costos de tiempo y desarrollo. La figura 2 muestra un posible esquema de el modelo en cuestión.[6]
Sin embargo, el modelo cascada en algunas de sus variantes es uno de los actualmente más utilizados[9] , por su eficacia y simplicidad, más que nada en software de pequeño y algunos de mediano porte; pero nunca (o muy rara vez) se lo usa en su forma pura, como se dijo anteriormente. En lugar de ello, siempre se produce alguna realimentación entre etapas, que no es completamente predecible ni rígida; esto da oportunidad al desarrollo de productos software en los cuales hay ciertas incertezas, cambios o evoluciones durante el ciclo de vida. Así por ejemplo, una vez capturados (elicitados) y especificados los requisitos (primera etapa) se puede pasar al diseño del sistema, pero durante esta última fase lo más probable es que se deban realizar ajustes en los requisitos (aunque sean mínimos), ya sea por fallas detectadas, ambigüedades o bien por que los propios requisitos han cambiado o evolucionado; con lo cual se debe retornar a la primera o previa etapa, hacer los pertinentes reajustes y luego continuar nuevamente con el diseño; esto último se conoce como realimentación. Lo normal en el modelo cascada será entonces la aplicación del mismo con sus etapas realimentadas de alguna forma, permitiendo retroceder de una a la anterior (e incluso poder saltar a varias anteriores) si es requerido.
De esta manera se obtiene un "modelo cascada realimentado", que puede ser esquematizado como lo ilustra la figura 3.
Fig. 3 - Modelo cascada realimentado para el ciclo de vida.
Lo dicho es, a grandes rasgos, la forma y utilización de este modelo, uno de los más usados y populares.[6] El modelo Cascada Realimentado resulta muy atractivo, hasta ideal, si el proyecto presenta alta rigidéz (pocos o ningún cambio, no evolutivo), los requisitos son muy claros y están correctamente especificados.[9]
Hay más variantes similares al modelo: refino de etapas (más estapas, menores y más específicas) o incluso mostrar menos etapas de las indicadas, aunque en tal caso la faltante estará dentro de alguna otra. El orden de esas fases indicadas en el ítem previo es el lógico y adecuado, pero adviértase, como se dijo, que normalmente habrá realimentación hacia atrás.
El modelo lineal o en Cascada es el paradigma más antiguo y extensamente utilizado, sin embargo las críticas a él (ver desventajas) han puesto en duda su eficacia. Pese a todo tiene un lugar muy importante en la Ingeniería de software y continúa siendo el más utilizado; y siempre es mejor que un enfoque al azar.[9]
Desventajas del modelo cascada:[6]
Los cambios introducidos durante el desarrollo pueden confundir al equipo profesional en las etapas tempranas del proyecto. Si los cambios se producen en etapa madura (codificación o prueba) pueden ser catastróficos para un proyecto grande.
No es frecuente que el cliente o usuario final explicite clara y completamente los requisitos (etapa de inicio); y el modelo lineal lo requiere. La incertidumbre natural en los comienzos es luego difícil de acomodar.[9]
El cliente debe tener paciencia ya que el software no estará disponible hasta muy avanzado el proyecto. Un error detectado por el cliente (en fase de operación) puede ser desastroso, implicando reinicio del proyecto, con altos costos.